We all
know that the Sun is our principal source of energy on earth. The
energy mainly comes in form of Sun light to us but over Billions of
years, solar energy also has managed to help in creating almost all
fossil fuels like coal and crude oil, available to us. How does the
Sun manages to perpetually create all this uninterrupted energy?
According to scientists, this energy is created by a nuclear process
known as fusion in which hydrogen nuclei, bound together by strong
gravitational force, fuse in a chain of reactions to produce finally
Helium. The actual reaction takes place in three steps. In the first
step two protons (hydrogen nuclei) fuse to produce a deuterium ( a
stable isotope of Hydrogen, nucleus of which contains an additional
neutron) and a positron ( an electron like particle with a positive
electrical charge.) In the second step this deuterium atom fuses with
another hydrogen proton to produce a light isotope of Helium, He3.
After these two steps are repeated, resultant two atoms of He3,
further fuse to produce He4 atom and release 2 neutrons.
Many
readers may might find all this atomic stuff rather tough to grasp,
as I found myself. It would suffice for our purpose to understand
that in a reaction, Hydrogen protons present in the Sun's core fuse
to produce He4 atoms and while this conversion takes place, enormous
amount of energy is given out, a miniscule part of which reaches us
on earth.
So,
can we build a micro Sun on earth, that can perhaps produce fusion
energy, which we can convert into electrical energy that we use? The
simple answer to this question is Yes! European Scientists have
already built one such experimental Sun at Culham, UK, that produces
16 MW of fusion power.
European Tokamek at Culham UK
However,
copying Suns's fusion process exactly on earth, faces one big hurdle.
The temperature at which, above reactions take place are
impractically high to achieve on earth. Scientists are therefore
using in such fusion machines, another fusion reaction, between
deuterium and Tritium atoms ( another stable isotope of Hydrogen
having one proton and tow neutrons in its nucleus) which can take
place at relatively lower temperatures. Such fusion machines have
been named as Tokamaks, as they were originally discovered in the
erstwhile Soviet Union (hence the Russian acronym), but now other
countries of the world have caught up. In a Tokamak machine, a
mixture of deuterium and tritium, is heated to temperatures in excess
of 150 million degrees Celsius forming a hot plasma.
This
brings us to another problem. There is no material available on earth
that can contain safely hot plasma at 150 Million degrees Celsus
before it can leak out. Scientists have solved this problem by a
clever method, that is known as magnetic confinement, in which
external and self generated magnetic fields hold the electrically
charged plasma at relatively low densities, away from material walls
for time periods of the order of a few seconds.
In a
Tokamak, the charged plasma is confined to a shape that looks like
an inflated rubber tube of a car wheel and is enclosed in a magnetic
cage. The magnetic fields produced by the coils surrounding the
plasma as well as by a current driven in the plasma itself, help in
confining the hot plasma away from surrounding material walls. The
plasma is heated to fusion relevant temperatures by injecting high
energy neutral particle beam or radio frequency waves from outside
which get absorbed in the plasma and heat it. Once the fusion
reaction starts, the energy that is given out, comes out of the
machine in the form of kinetic energy of the product particles and
can be converted into electricity by conventional technologies.
ITER Campus in southern France
Using
this technology, an international project has been launched by seven
nations of the world; China, European Union, India, Japan, the
Republic of Korea, the Russian Federation and the United States of
America. The project is called as as ITER, meaning "the way"
in Latin and is coming up at a 180 hectare ITER site in Cadarache,
southern France. The main feature at this site would be a man-made
level platform that would be 1 Km long and 400 metres wide and would
occupy an area of 180 hectors or equivalent to 60 soccer fields. The
entire Tokamak Building will be slightly taller than the Arc de
Triumph in Paris. The Tokamak will weigh 23,000 tons and would
generate a plasma volume of 840 Cubic Meters.
India
joined the ITER project in 2005. Government then entrusted The
Institute for Plasma Research (IPR) at Gandhinagar, Gujarat, to
manage its participation. As per agreement, each and every member
country of 7, have formed their domestic ITER organizations in their
country. The strength of ITER-India now stands at 83 permanent and 10
contracted staff. Additionally, about 20 engineers hired from
different engineering service companies work on the ITER-India
premises.
The Cryostat model
India
has been entrusted with manufacture of the Cryostat assembly of the
Tokamak. The cryostat is a large, stainless steel structure
surrounding the vacuum vessel and superconducting magnets, providing
a super-cool, vacuum environment. It is made up of a single wall
cylindrical construction, reinforced by horizontal and vertical ribs.
The cryostat is 29.3 metres tall and 28.6 metres wide. India's
Larsen and Toubro Ltd, was awarded the contract for the fabrication
and assembly of the ITER Cryostat in August 2012.
Beginning
from December 2015, Cryostat's 54 segments, which are amongst the
largest and heaviest components of the whole Tokamak assembly, will
start arriving on site. They will have to be pre-assembled into four
sections, before being transported to the main Assembly Building.
ITER and India sign an agreement to build the Cryostat shell
This
week an agreement was signed by the ITER Organization in France and
the Indian Domestic Agency under which a small area of the size of a
football field was made available to the Indian Domestic Agency of
the ITER project. In this area Indian domestic agency of ITER will
build and operate a workshop to assemble the four pre assembly
sections from 54 segments that would be arriving from India. ITER
has named this area as Little India. Work on the steel-framed
workshop should begin in the coming weeks. Once the building is
completed, Larsen and Toubro Ltd, will have some 50 people on site,
and many more, locally subcontracted, once the actual assembly work
begins.
ITER
project ranks as the most ambitious science endeavors of our times
jointly undertaken by 7 major nations from earth. In all, 34 nations
would be collaborating with the project. Buildings would start coming
up in France in 2010 and ITER expects project's first plasma in
November 2020.
The
ITER Tokamak would generate temperatures inside, that would reach
10 times the temperature at the core of the Sun. With completion of
the project, mankind would have finally succeeded in creating a Sun,
even though of a Nano size, on the surface of the earth.
30
April 2013
No comments:
Post a Comment